User Guide Overview
Learn how to use Prompt Refiner effectively to optimize your LLM inputs.
What is Prompt Refiner?
Prompt Refiner is a library for cleaning and optimizing text before sending it to LLM APIs. It helps you:
- Save money by reducing token usage
- Improve quality by cleaning and normalizing text
- Enhance security by redacting PII
- Track value by measuring optimization impact
Core Concepts
Operations
An Operation is a single transformation that processes text:
from prompt_refiner import StripHTML
operation = StripHTML()
result = operation.process("<p>Hello</p>")
# Output: "Hello"
All operations implement the same interface: process(text: str) -> str
Pipelines
A Pipeline chains multiple operations together:
from prompt_refiner import StripHTML, NormalizeWhitespace
# Using the pipe operator (recommended)
pipeline = (
StripHTML()
| NormalizeWhitespace()
)
result = pipeline.run("<p>Hello World</p>")
# Output: "Hello World"
Alternatively, use the fluent API:
from prompt_refiner import Refiner
pipeline = Refiner().pipe(StripHTML()).pipe(NormalizeWhitespace())
The 4 Modules
- Cleaner - Clean dirty data
- Compressor - Reduce size
- Scrubber - Security & privacy
- Analyzer - Track metrics